یادگیری ماشین


یادگیری ماشین

یادگیری ماشین زیرمجموعه‌ای از هوش مصنوعی (AI) محسوب می‌شود. به‌طورکلی هدف یادگیری ماشین درک ساختار داده‌ها و انطباق آن‌ها در مدل‌هایی است که توسط افراد قابل درک و استفاده باشد. همانطور که در دنیای هالیوود فیلم هایی ساخته می شود که بعضی ها معتقدند روزی به حقیقت می پیوندد. داستان های تخیلی که وقوعشان بسیار دور از ذهن است.

یادگیری ماشین، واژه‌ای است که توسط آرتور ساموئل در سال ۱۹۵۹ ابداع شد. این فناوری شاخه‌ای از هوش مصنوعی و علوم رایانه است. این تکنولوژی در علوم داده دارای اهمیت بسیار زیادی است. یادگیری ماشین هوشمند کردن رایانه‌هاست بدون اینکه مستقیماً به آنها یاد بدهیم چطور رفتار کنند. رایانه‌ها می‌توانند با استفاده از حجم عظیمی از داده، به طور خودکار الگوهایی تکرارشونده را بدون دخالت انسان یاد بگیرند. یادگیری این الگوریتم‌ها به تقلید از شیوه یادگیری انسان انجام می‌شود.

یادگیری ماشین به برنامه های نرم افزاری اجازه می دهد تا در پیش بینی نتایج خروجی دقیقتر عمل کنند، بدون اینکه بطور مستقیم برای انجام این کار برنامه ریزی شده باشند. الگوریتم‌های یادگیری ماشین از داده‌های سابق به عنوان ورودی برای یادگیری و سپس پیش بینی مقادیر خروجی جدید استفاده می‌کنند.

اهمیت یادگیری ماشین

یادگیری ماشین به این دلیل مهم است که دیدگاهی جدید از روند رفتار مشتریان در هنگام تعامل با کسب‌وکار و الگوهای عملیاتی کسب‌وکار به شرکت‌ها ارائه می‌دهد و همچنین از توسعه محصولات جدید پشتیبانی می‌کند. بسیاری از شرکت‌های پیشروی امروزی مانند فیس‌بوک، گوگل و اوبر، یادگیری ماشین را به بخش مرکزی عملیات کسب‌وکار خود تبدیل کرده‌اند

انواع مختلف یادگیری ماشین

چهار رویکرد اساسی برای یادگیری ماشین عبارتند از:

یادگیری تحت نظارت (Supervised Learning): در این نوع یادگیری ماشین دانشمندان داده الگوریتم‌هایی را با داده‌های آموزشی برچسب‌گذاری شده آموزش می‌دهند و متغیرهایی را مشخص می‌کنند که می‌خواهند الگوریتم مورد نظر همبستگی میان آن‌ها را ارزیابی کنند. به عبارتی، در این شیوه‌ی یادگیری ماشین هم ورودی و هم خروجی الگوریتم مشخص می‌شود.

یادگیری بدون نظارت (Unsupervised Learning): این نوع یادگیری ماشین شامل الگوریتم‌هایی است که با استفاده از داده‌های بدون برچسب آموزش می‌بینند. الگوریتم یادگیری بدون نظارت از طریق مجموعه داده‌های ورودی خود، هر گونه ارتباط معنی‌دار میان آن‌ها را ارزیابی می‌کند. به عبارت بهتر، در این شیوه‌ی یادگیری ماشین داده‌هایی که الگوریتم‌ها روی آن‌ها آموزش می‌بینند و همچنین پیش‌بینی‌ها یا توصیه‌هایی که در خروجی تولید می‌کنند، از پیش تعیین شده‌ هستند.

یادگیری نیمه نظارتی (Semi-supervised Learning): این رویکرد نوعی یادگیری ماشین ترکیب شده از دو شیوه‌ی یادگیری قبلی است. دانشمندان داده در این روش الگوریتم را با داده‌های آموزشی برچسب‌گذاری شده آموزش می‌دهند. از سوی دیگر این مدل می‌تواند داده‌ها را به تنهایی بررسی کرده و درک خود را از این مجموعه داده‌های ورودی توسعه دهد و چیزهای بیشتری یاد بگیرد.

یادگیری تقویتی (Reinforcement Learning): دانشمندان داده معمولا از شیوه‌ی یادگیری تقویتی برای آموزش سیستمی و برای تکمیل فرآیندی چند مرحله‌ای استفاده می‌کنند؛ فرآیندی که قوانین کاملا مشخصی نیز برای آن وجود دارد. در این روش دانشمندان داده ابتدا الگوریتمی را برای تکمیل یک کار برنامه‌ریزی می‌کنند. سپس سرنخ‌های مثبت یا منفی‌ای را در رابطه با نحوه‌ی تکمیل کار مورد نظر به همان الگوریتم می‌دهند.

 

نظرات